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A Study of Stationary I 

Satisfying Mod 
the Exterior dalculus Package XTR for REDUCE 

NOTE 

Axially Symmetric Space-time Geometries 
fied Double Duality Equations Using 

1. INTRODIJCTION 

Various types of gravitational theories that generalize 
Einstein’s theory were being discussed during the recent 
years. A generalization that received a lot of attention was 
due to Stephenson, Kilmister, Yang, and several others 
[l-3]. In this theory the gravitational action is written in 
analogy with Yang-Mills type gauge theories, so that the 
field equations are obtained by varying a quadratic 
curvature invariant. In a perturbative approach to field 
quantisation this theory leads to a renormalisable, albeit 
in general, non-unitary quantum gravity [43. Even at the 
classical level the theory has some serious problems. 
Namely, it admits non-physical solutions [S, 61. Therefore, 
in an attempt to constrain the quadratic theory further it 
was suggested to add on the Einstein-Hilbert action [7]- If 
it is further allowed to add a cosmological constant, then 
some remarkable simplifications follow. For a definite value 
of the cosmological constant, there is a set of modified 
double dual curvature equations whose integrability condi- 
tions give precisely the variational field equations [S, 93. 
Thus, static spherically symmetric geometries with dynami- 
cal torsion are determined by the modified double duality 
equations [IO]. 

We now wish to study stationary, axially symmetric solu- 
tions to the modified double duality equations [ 111. We 
also start from the Kerr-de Sitter metric; however, we aim 
in particular to determine geometries that in the limit of 
vanishing rotation parameter would go to the static, 
spherically symmetric solutions given in Ref. [S]. Those 
reduced equations are given below. The long and tedious 
algebraic manipulations that led to this system of coupled 
ordinary differential equations are performed using the 
exterior calculus package XTR for REDUCE we developed 
independently. 

2. THE XTR PACKAGE 

Exterior algebra is gaining importance as a computa- 
tional tool in various branches of theoretical physics. XTR 
is a package which enables computations in this formalism 

in the algebraic simplification language REDUCE 3 [ 121. 
The implementation language has been chosen to be 
REDUCE because of its widespread use and availability. 
XTR has built-in facilities for computations in gravitational 
and gauge field theories. There already exist some systems 
which perform computations in the same formalism. Maybe 
the most well-known system that exists up to this time is 
EXCALC [13], which is also a package developed for 
REDUCE and now is distributed along with it. 

XTR is short in code and fast in computation. It uses a dif- 
ferent syntax which we believe is more coherent with the 
general idea behind REDUCE. XTR should be regarded as 
an open-code rather than being a computational black-box. 
As an example, XTR enables declaration of form-valued 
functions at user 1eveI and provides a handle to access the 
form-degree(s) of the argument(s) as well as the ability to 
declare the way of computing the function’s form-degree. As 
another example, XTR avoids the implicit assumption of 
summation convention over repeated indices, in order to 
give flexibility to the user for possible coding of efficient 
algorithms specific to a problem. It is worthwhile to 
mention the facility build in XTR for solving dimensional 
reduction problems which will not be possible using 
EXCALC. The technique of dimensional reduction can be 
described as: 

1. There exists an n-dimensional manifold M,, with a 
topology M,, x M,,. 

2. The physical quantities (like connection l-farms, 
curvature 2-forms, the curunture scalar, etc.) are calculated 
for M,,. 

3. Similar physical quantities are calculated indepen- 
dently for M,l, and Mnz. 

4. Using those results, the physical quantities for M, are 
tried to be expressed in terms of the physical quantities of 
M,,, and M,, only. 

The underlying topology of the manifold reflects in the 
coordinate chart xM that it is partitioned as (xP, JJ”), where 
the indices run as p = 0, 1, *.., n, - 1 and m = IZ~, . . . . n. This 
idea of index separation is easily handled with the facilities 
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XTR provides. It is possible to define the dimensional reduc- 
tion spaces, declare forms to exist in any of them, or to have 
contributions to both of the spaces. Furthermore, it is 
also possible to declare indexed forms to have a lifestyle 
according to their symbolic indices. As would be expected, 
facilities that define the way the indices shall split while the 
dimensional reduction is carried out are present. 

A manual which will be provided upon request, gives a 
full description of XTR, assuming the user has a very limited 
knowledge of REDUCE and automated symbolic computa- 
tion. Detailed information on the inner structure of the 
package, which will aid the advanced user for possible 
extensions, is also provided. 

It is very common that the operations performed in 
exterior calculus fall into one of the two classes, namely the 
one in which the operations are antiderivations, where the 
distribution rule is 

* It acts as an antiderivative type of operator over 
the wedge product. 

* Is nilpotent. 
* It is possible to force the system to leave the 

interior products, which can not be explicitly 
calculated, as they are. 

- Hodge duality. 

A(q A r)= Aq A r+(-)deg(y)q A Ar, 

* If the vierbein and the signature are provided 
then the system is able to carry out the substitu- 
tion for the hodge operation. 

* It is known how multi-hodges simplify. 

In addition to these capabilities, XTR is also able to carry 
out the calculations in an orthonormal base, if it is provided 
with the vierbein/vielbein. The user also has control over the 
exterior operations by setting some flags of the package ON 
or OFF. 

and the one in which the operations are derivations, where 
the distribution rule is 

It is worth mentioning about the facility built in XTR for 
“dimensional reduction.” 

q (qr\r)=Oqr\r+qr\ Or. 

XTR has built in facilities to declare operators with these 
distribution rules. Also it is possible to have multilinear 
operations. Among the capabilities of the package are: 

The modified double duality equations are 

l Setting the dimensions and signature of the form space. 
l Declaration of variables and REDUCE operators to be 

forms of any degree. 

* 

( 
R”“+qe, A eb 

> ( 
=- Rab+ieuAeb 

> 

* 
, (1) 

where ,4 is an arbitrary real parameter; (e”) are the 
orthonormal coframes in terms of which the metric 

l Performing the basic operations of exterior calculus, 
namely: 

- Exterior (wedge) product. XTR knows: 
* The commutation rule, p A q = (- )deg(p)deg(y). 

‘I A P. 
* A wedge product which contains a form in two 

different places will cause the product to be zero 
if this is an odd-degree-form. 

* Any wedge product that sums up to a higher 
degree than the space dimension in degrees is 
zero. 

* The wedge product of two zero forms is the 
ordinary multiplication of them. 

- Exterior differentiation. 

g = qabea @ eb. (2) 

We take l],b = diag( - + + + ). Together with the connec- 
tion l-fOrITX3 (o”b), the COframeS Satkfy the structure 
equations 

de” + &b A eb = T” (3) 

dW”, + W”,. A w(‘b = Rub. (4) 

Here T” = TbC,O eb A e’ are the torsion 2-forms and 
R”, = &,,ub ec A ed are the curvature 2-forms of space- 
time. A * to the left of a form describes its Hodge dual, 
defined so that the invariant volume element 

* It acts as an antiderivative type of operator over 
the wedge product. 

* Is nilpotent. 
* It acts as the ordinary differentiation if applied to 

zero-forms. 
* It is possible to control the expansion into partial 

derivatives if it is a function that is subject to the 
operation. 

A * to the right of a second-rank antisymmetric tensor 
denotes its dual. For instance, 

3. EXTERIOR CALCULUS: 
NOTATION AND CONVENTIONS 

*l =e” A e’ A e2 A e3 

1 
=z EubcdeU A eb A e’ A ed. (5) 

Rrb = & EubCdRcd. (6) 
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The modified double duality equations may also be written 
in the form 

*Rub + Rzb = 1 *(e, A eJ. (7) 

4. STATIONARY, AXISYMMETRIC 
DOUBLE DUAL CURVATURES 

We consider solutions described by the 
metric [ 141 

g=- sr dt - a sin2 8 dq ’ 

r2 + a2 cos28 1 - ka2/3 1 

Kerr de Sitter 

+ (r* + a2 cos* 19) 
dtl’ 

1 - (l/3) ka2 cos’ 8 

+ sin’ 8 
1 - (l/3) ka2 cos2 8 

r2 + a2 cos* (3 > 

adt-(r2+a2)dq * x 
1 - ka*/3 1 (8) 

expressed in terms of Boyer-Lindquist coordinates 
(t, r, 8, cp) [ 151. For later convenience we define 

(Z,)2 A 1 -ia2 

(Z2)2 P r2 + a*p* 

(Z,)’ 6 1 -r a2p2 

M2& 1-g 

k 
(S,)* 4 - (r4 + a2r2) + r2 - 2mr + a2, 

3 

where p = cos 19, m shows the Schwarzschild mass, a is the 
rotation, and k is a real parameter. We take the ortho- 
normal co-frames 

6, aM26, 
e” = (Z,)2 22 dt - (ZJ2 z, dq 

aMZ, 
f’=(z,)2Z2dt- 

e’=Z,dr 
6, 

(9) 

e3=&dp. 

Then the Levi-Civita connection l-forms are found as 

.. -arMZ3 2 wJ 
o- 

2 e3 

l- (Z,)3 e + (Z,)’ 
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a6 
3a2p26,-J+ ka2r3 ar 

- 3a2r + 3krs + 3r3 
> 

+ 3mr4 

1 3MZ, ar 
-3a2r3+kr7 e”+peel 

(Z2)’ 

a2WZ3 o tio3=me - UPS 1,’ 

(Z2)’ 

g, = arMZ r6 -+eO+Le’ 
(Z2) (Z2)’ 

a@ 
h’3 - (z2)3 

-Leo+ P 

3Mz,(zd3 

x [ka2(p2(Z2)2 - M2r2) - 3(a2 + r’)] e’ 

(10) 

a2pA4Z3 r6 
h23=Te2-~e3 

(Z2) (Z2)’ 

We will construct solutions such that the full connection 
l-forms are 

0 o2 = SZ3eo + Q,e’ 

w o3 = Qseo + SZ,e’ 
(11) 

W 12 = f2,e” + Q,e’ 

w13 = C&e0 + Qloe’ 

02,=Q,,e2+Q,,e3. 

TABLE I 

A B C.D E.F G.H I.J 

s, -1 2 8.9 -1’ 10 6.3 -5.4 
s2 -11 12 8.3 -1.4 -6.9 5 10 
s, 9 -4 -8.1 -1.12 -6.11 5.2 
s5 3 10 -8.11 I.2 6.1 5.12 
S8 -1 -6 4.11 -3.2 -1.10 -12.9 
Sp 5 -8 -4.1 -3 12 2.9 -11 .I0 
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TABLE II 

A B C D E,F G.H I.J K,L 

s3 4 9 -3 -10 8.2 -7.11 6.12 5.1 
SC 10 -3 -9 4 -8 12 -7 1 6.2 -5.11 
s, 6 -7 -5 8 -4.12 -3.1 2.10 -11.9 
s 10 -8 -5 7 6 -4.2 3.11 -1.9 -12.10 

After manipulating the structure equations we obtain 

*Ro, + R,*, = S,e” A e’ + S2e2 A e’ 

*R,,+R&=SS3eo A e2+S,eo A e’ 

+S5e’ A e’+S,e A e3 

*Ro3 + Rg3 = S,e” A e2 + S8eo A e3 

+ Sge’ A e2 + S,,e’ A e’ 

*RI2 + RT2 = -Sloe0 A e2 + Sgeo A e3 

-S,e’ A e2+S,e’ A e’ 

*R,3 + RT3 = See0 A e2 - S5eo A e3 

+S4e1 A e2-S3e’ A e3 

*R,, + R;3 = S2eo A e’ - S, e2 A e3. 

(12) 

The functions S,, . . . . S,, will be given explicitly below. 
In terms of these functions the modified double duality 
equations (7) read 

s,= -sg=s9=2 
(13) 

These functions are classified in two distinct sets. Six of 
them, namely S,, S,, S4, S,, S,, S9 are of the generic form: 

$-p P4Z3(a2P + (Z2)’ 8,) %I 
2 

+ dr(r + (Z2)’ 8,) Q, + W213 

x [Q&22, + Q,Q,+ a,sz, + Q,Q,]}. 

The actual expressions we list in Table I. The first horizontal 
line in the table means: 

s1 = (Z,)’ 
-L { -MZ3(a2p + (Z,)’ a,) Q, 

+ d,(r + V2)’ 8,) J-22 + (Z213 

xCSZ,SZ,-a,a,o+52,523-0,9,1). 

The other expressions can be similarly written out. 
The second set of functions S,, Se, S,, S,, are of the 

generic form 

(z ;2 z iMz3[ -r6, + tz2)’ ar(sr) + (z2)’ srarl QB 
2 3 

+ [&kr2a2(2p2 - 1) - (r2 + a’) 

+ $ka4p4) + ~tf~(Z’)~ (Z,)’ a,] ~-2, 

+ 2uMZ,[pd,SZ, + rMZ,Q,] 

+ (Z2)’ z3c~,~,+~G~H+52,52,+~2,sL,l}. 

The actual expressions are listed in Table II. Their solutions 
will be discussed elsewhere [ 161. 

5. CONCLUSION 

The newly developed exterior calculus package, X’R, for 
REDUCE is introduced. Besides its open code design 
philosophy which enables flexibility in special applications, 
this package provides additional computational abilities for 
the dimensional reduction technique that makes it unique. 
In the future the package will be further developed to 
include the 

l ability to handle Lie algebra valued forms and 
l automatic simplification of indexed quantities. 
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APPENDIX 

XTR extended REDUCE program for the problem described in the preceding sections: 

$Kerr-de SittermetricinBoyer-Lindquistcoordinatesver2.1; 

COORDINATETI,PHI,R,MU; 
OPERATORT2, T3,M, DELR; 
OPERATORCONNECTION,DCONNECTION; 
ANTISYMMETRICCONNECTION,DCONNECTION; 

$TlhasnoR,MUdependency; 

LETT2=T2(R,MU), 
T3=T3(MU), 
M=M(MU), 
DELMU=T3(MU)*M(MU), 
DELR=DELR(R); 

LETDF(T2(R,MU), R)=R/TX, 
DF(T2(R,MU),MU)=AA**2*MU/T2, 
DF(T3(MU),MU)=(T1**2-l)*MU/T3, 
DF(M(MU), MU)=-MU/M, 
DF(DELR(R),R)=(2/3*K*R**3+(2-T1**2)*R-MASS)/DELR; 

INTEGERPROCEDUREETA(1); $Used forindexraisingandlowering 
IF I=0 THEN-lELSE1; 

PROCEDUREW(A, B)$ Definitionofhowto obtainthe 
1/2*(ETA(B)*(A.*.DEB)+ connectionone-forms. 

ETA(A)*(B .*.DEA)+ 
FORC:=O:3 SUM 
(A.*. (B .*.DEC)*ETAC*EC)$ 

MATRIXVIERBEIN(4,4), INVIERBEIN(4,4); 

VIERBEIN(l,l):= DELR/T1**2/T2$ 
VIERBEIN(1,2):=-AA*M**2*DELR/T1**2/T2$ 
VIERBEIN(2,1):= AA*M*T3/T1**2/T2$ 
VIERBEIN(2,2):=-M*(R**2+AA**2)*T3/Tl**2/T2$ 
VIERBEIN(3, 3):= TB/DELR$ 
VIERBEIN(4,4):= TZ/DELMU$ 

qbBelowwedefinetheinversevierbein,infact,thiscouldbeleft; 
%tothe systembycallingGENERATEasGENERATE(T)butthe result ; 
%isnotascompactastheonebelowduetothematrixinversion ; 
%routinesofREDUCEitself ; 

INVIERBEIN(l,l):= T1**2*(R**2+AA**2)/T2/DELR$ 
INVIERBEIN(1, 2):=-T1**2*AA*M/T2/T3$ 
INVIERBEIN(2,1):= T1**2*AA/TB*DELR$ 
INVIERBEIN(2, 2):=-T1**2/T2/T3/M$ 
INVIERBEIN(3, 3):= DELR/T2$ 
INVIERBEIN(4,4):= DELMU/T2$ 

ONDEREXP; 

GENERATE( ); 

ONINBASE; %Wewanttheresultsinterms of the orthonormalcoframes; 
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FACTOREO&El&E2,EO&El&E3,EO&E2&E3,El&E2&E3, 
EO&El,EO&E2,EO&E3,El&E2,El&E3,E2&E3, 
EO,El,E2,E3; 

OFFUNKINPRD$%Nounknowninteriorproductshallremain; 

%Firstcomputethe connectionsandstoretheresultinto CONNECTION; 

FORA:=O:3DO 
FORB:=A+1:3DO 

CONNECTION(A,B):=W(A,B)$ 

$NowcomputetheD's ofthe connections; 

FORA:=O:3DO 
FORB:=A+1:3DO 

DCONNECTION(A,B):=DW(A,B)$ 

%Computethe riemann2-forms; 

OPERATORRIEMANN; 
ANTISYMMETRICRIEMANN; 

FORA:=O:3DO 
FORB:=A+1:3DO 

RIEMANN(A,B):=DCONNECTION(A,B)+ 
FORC:=O:3 SUM 

ETA(C)*CONNECTION(A,C)&CONNECTION(C,B); 

%PROMETEUSwillcontainThemodifieddoubledualityequations; 

FORA:=O:3DO 
FORB:=A+1:3DO 

PROMETEUS(A,B):=RHODGERIEMANN(A,B)+ #RIEMANN(A,B); 

REMCOORDINATETI,PHI,R,MU; $Justto speedup; 

LET 
T1**2 =l-K/3*AA**2, 
T2(R,MU)**2=R**2+AA**2*MU**2, 
T3(MU)**2 =l-K/3*AA**2*MU**2, 
M(MU)**2 =l-MU**2, 
DELR(R)**2 =K/3*(R**4+AA**2*R**2)+R**2-2*MASS*R+AA**2; 

$The outputting of the results; 

FORA:=O:3DOFORB:=A+1:3DO 
CONNECTION(A, B):=CONNECTION(A, B); 

FORA:=O:3DO FORB:=A+1:3DO 
DCONNECTION(A,B):=DCONNECTION(A,B); 

FORA:=O:3DOFORB:=A+1:3DO 
RIEMANN(A, B):=RIEMANN(A, B); 

FORA:=O:3DOFORB:=A+1:3DO 
PROMETEUS(A, B):=PROMETEUS(A, B); 
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